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ABSTRACT 

Dynamic functional imaging promises powerful tools for 
the visualization and elucidation of important disease-
causing biological processes, where the pixels often 
represent a composite of multiple biomarkers independent 
of spatial resolution. This study exploits both blind source 
separation and imagery marker characteristics to develop a 
hybrid method for the separation of mixed yet correlated 
biomarker distributions in DCE-MRI. A compartment latent 
variable model is constructed upon which a novel convex 
analysis framework is proposed to provide a close-form 
algebraic solution to separating composite markers with 
non-negativity and well-grounded points. A unique non-
negative clustered component analysis is further developed 
to explicitly consider both partial volume effect and noise 
contamination. Experimental results show promising and 
robust extraction of time activity curves and vascular 
marker images in agreement with biomedical expectations.  

Index Terms—Blind source separation, compartment 
model, convex analysis, tumor angiogenesis, dynamic 
contrast-enhanced magnetic resonance imaging 

1. INTRODUCTION 

Dynamic imaging exploits the joint-effect of probe-
target interactions and promises simultaneous imaging of 
multiple biomarkers, where the pixel values often represent 
a composite of distinct sources independent of spatial 
resolution. Dynamic contrast-enhanced magnetic resonance 
imaging (DCE-MRI) uses various molecular weight contrast 
agents to assess tumor vascular permeability and quantify 
cellular and molecular abnormalities in blood vessel walls 
[1, 2]. Specifically, tumor tissue is made up of sub-regions 
with heterogeneous kinetics, so the signal of pixels often 
reflects multiple microenvironments in a tumor, thus 
represents a complex summation of vascular permeability 
with various perfusion rates [2]. Recent research aims to 
simultaneously dissect the spatial-temporal characteristics of 
source signals (permeability of different perfusions). 

Various methods have been proposed for separating the 
composite biomarker signals in dynamic functional imaging. 
The major limitations associated with the existing methods 
include unrealistic assumptions of the computational model 
(such as source independence and model identifiability) [3], 

inability of acquiring in vivo temporal/spectral characteristic 
curves of the probes [4], and vulnerability to noise impact 
[5]. This motivates the consideration of a hybrid blind 
source separation approach that exploits both the temporal 
diversity of probe dynamics and the non-negativity of the 
biomarker images. A convex analysis based algebraic 
solution, coupled with scatter plot clustering, is proposed to 
extract the angiogenic permeability distributions (APD) and 
time activity curves (TAC) from dynamically mixed DCE-
MRI image sequences. 

2. THEORY AND METHOD 

2.1 Compartment model
We introduce a compartment latent variable model of DCE-
MRI. We adopt a two-tissue compartment model to 
illustrate the spatial-temporal probe kinetics, where the 
tumor activities consist of fast and slow turnover pools, see 
Fig. 1.  

Specifically, we use a latent variable model to describe 
the relationship between APD and TAC, as well as the 
plasma input. Let 1 2( ) [ ( , ), ( , ),..., ( , )]T

Li x i t x i t x i tx  be the 
observed tissue activities at pixel i measured over L  time 
points, i.e., the time activity curve of pixel i . Now consider 
the APD ( ) [ ( ), ( ), ( )]T

f s pi k i k i k ik  together with a 3L
mixing matrix A  which maps the latent space to the data 
space via ( ) ( )i ix Ak :
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where subscripts , ,f s p  represent the fast flow, slow flow 
and input function respectively, N is the number of pixels 
and
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where  denotes convolution operation; ( )pc t  is the tracer 
concentration in plasma (the input function); 2 fk and 2sk
are the rate constants for efflux in the fast flow and slow 
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flow pools respectively [6]; we define compartment TACs 
as 1 2[ ( ), ( ), ..., ( )]j j j j La t a t a ta , , ,j f s p , associated with  
the corresponding APDs. Fig.1 (b) illustrates the patterns of 

( )fa t , ( )sa t , ( )pa t . It can be seen that the observation 

( )ix  is linear combination of ja , , ,j f s p , weighted by 
( )fk i , ( )sk i , and ( )pk i .

Fig. 1 Two-tissue compartment model and time-activity curves of 
perfusions for quantifying tumor vascular characteristics based on DCE-
MRI. The patterns of interests include the heterogeneous spatial 
distribution of vascular permeability associated with fast and slow 
diffusions. (a) Schematic diagram. (b) Supposed time activity curve of fast 
flow, slow flow, and input function, denoted by f, s, p respectively.

Since ( )ik  and A  are both unknown, the reconstruction 
of the model can be formulated as a blind source separation 
(BSS) problem, where the task is to find an unmixing matrix 
W from ( )ix  such that

ˆ i i i ik Wx WAk Pk               (3) 

where ˆ ik  is the estimated ( )ik  up to a permutation P .

2.2 Well Grounded Points 
    As aforementioned, the compartment model given by (1) 
can be alternatively expressed as

, ,

( ) ( )
f s p

j j
j

i k ix a ,                            (4) 

where 0jk i and ja  for , ,j f s p  are linearly 
independent vectors due to the heterogeneous property. 
Based on the realistic tumor characteristics in DCE-MRI 
that the vasculatures of different compartments have their 
own unique perfusion patterns, we assume that there exists a 
point index ,WGP ji  such that ,( )WGP jik  satisfies 

, ,( ) ( ) ,     , ,WGP j j WGP j ji k i j f s pk e ,
where ,( ) 0j WGP jk i  and je  is the jth standard base. This 

kind of points ,( ),  , ,WGP ji j f s pk  is referred herein to 
well grounded points (WGPs) and the corresponding 
observations ,( )WGP jix are called as extreme points. 
Therefore ,( )WGP jix  has the same dynamic patterns as the 
corresponding compartment TAC, i.e., 

, ,( ) ( ) , , ,WGP j j WGP j ji k i j f s px a .             (5) 
    For the verification of WGPs assumption, we employ soft 
clustering methods such as expectation maximization (EM) 
and fuzzy C means method to cluster ( )ix of DCE-MRI 

data. We discovered that most pixels have unique 
membership to a single cluster with negligible associations 
with other clusters, and the cluster centers shows similar 
dynamic patterns as fast flow and slow flow compartment 
TACs. This fact supports the assumption of WGPs. 

2.3 Convexity Pyramid Method 
We exploit some concepts of convex geometry to analyze 
the latent variable compartment model, which is not only 
suitable for (4) but also for the case of any number of 
sources, denoted by K . A convex pyramid of a set of 
vectors , 1, 2,...,L

jA j Ka  is the set of all the non-

negative combinations of 1,..., Ka a , defined as 

convex 1
| ,  0 .K

j j j jj
A Aa a

where vectors 1,..., Ka a  are the lateral edges of 

1,..., KA a a  if A  is linearly independent. 

Lemma 1 (Convex geometry of observation scatter plot).

Suppose ( ), 1,...,X i i Nx ,
1

( ) ( )
K

j jj
i k ix a , the 

source components 0jk i  and 1[ ,..., ]KA a a  is a full-

rank real-valued matrix, then 1 , ,X Nx x  is 

confined within a convex pyramid of A , i.e.,
convexX A .

Lemma 1 suggests that all the observations X are
enclosed by a convex pyramid whose lateral edges are 

1,..., Ka a . With the existence of WGPs, albeit shall be 
possible to obtain the information about 1,..., Ka a  from the 
set of observations X , as described in the following 
Theorem 1.  

Theorem 1 (Identifiability). Suppose that the source 
components 0jk i  and there is at least one WGP on 

each of the K coordinate axes, 
1

( ) ( )
K

j jj
i k ix a  and 

1[ ,..., ]KA a a  is a full-rank real-valued matrix, then the 

lateral edges of convex X  are 1,..., Ka a .

    Theorem 1 suggests immediately the possibility of 
identifying the mixing matrix A  by determining the lateral 
edges of convex X , i.e. WGP, , 1,...ji j Kx . A geometric 

illustration of Theorem 1 for 3K  is shown in Fig. 2. The 
blue dots are the observations 1 , , Nx x  forming the 

convex pyramid convex X . The red dots circled by broken 
line are the observations on the three lateral edges of the 
convex pyramid, i.e.  
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, , , 1, 2,3WGP j j WGP j ji k i jx a ,

which also represents the column vectors of A  except for a 
componential scaling by WGPs.  

Fig.2: Geometry of Theorem 1. 

To utilize some existing extreme point search methods for 
a convex hull, we perform a normalization procedure over 
time that maps all the observations 1 , , Nx x  onto a 
hyperplane so that the normalized observations 

1 , , Nx x  satisfy

1
( ) 1L

ll
x i ,                              (6) 

where ( )lx i  is the lth component of the normalized data 
points.  
    The problem for identifying the lateral edges of a convex 
pyramid suggested by Theorem 1 is then converted into the 
search of the extreme points of a convex hull, stated in the 
following lemma. 
 
Lemma 2 (Normalization & Convex Hull). Suppose there 
is at least one WGP on each of the K coordinate axes in 
source space and A  is a full-rank real-valued mixing 
matrix, then the convex pyramid of 1 , , Nx x  becomes 
a convex hull whose extreme points are the normalized 
lateral edges (or the normalized column vectors of mixing 
matrix). 
 
    This problem for determining the extreme points of a 
convex hull can be solved by the readily available quickhull 
algorithm. Note that we omit all the proofs of Lemma 1, 
Theorem1, and Lemma 2 due to space limit, and their 
detailed proofs will be given in our up coming journal 
paper.

From convex pyramid algorithm and (5), ideally pixel 
TACs ( )ix  in DCE-MRI data will form a convex pyramid 
whose edges have the same directions as , ,f s pa a a , and 

the corresponding ( )ik are well grounded points.  
   The proposed convex pyramid method was tested on 
simulated dual-energy chest x-ray images. Figs. 3(a) and 
3(b) correspond to the source images of soft tissue and bony 
structures. We apply the convex pyramid method to the 
simulated linear combination of the source images and 
recover them as shown in Figs. 3(d) and 3(e). Fig. 3(c) is 

the scatter plot of 3(a) and 3(b) while 3(f) is the scatter plot 
of 3(d) and 3(e), where the estimated source images and 
their scatter plot resemble quite well the ground truth. 

                       (a)                              (b)                                 (c) 

                     (d)                                (e)                                  (f)                                                  
Fig. 3 Application of convex pyramid method to simulated chest X-ray. 

2.4 Non-negative Clustered Component Analysis 
However, the real DCE-MRI data may be affected by 

heavy noise and partial volume effect (PVE) [7], thus 
exploring the application of convex pyramid method to 
DCE-MRI in practice is the subject of ensuing 
developments. 

Our recently proposed non-negative clustered component 
analysis (nCCA) [8] is designed to remove noise effect. 
nCCA consists of multivariate soft clustering, information 
visualization, and spatial aided PVE removal. It works on a 
Gaussian Mixture Model (GMM) of pure-volume pixels 

( ) ( )n ji ix a , { , , },j f s p                (9) 
where ( )n ix  is the noisy observation and ( )i  is assumed to 
be a zero-mean noise vector with a spatially Gaussian 
distribution. By employing EM algorithm to cluster ( )n ix ,
the centers of the Gaussian kernel (the estimated 
compartment TACs , ,f s pa a a ) can be obtained. With this 
step, the noisy effect is firstly removed. 

2.5 Convexity Measure
Once the original pixels are replaced by the cluster 

centers estimated by nCCA and defined as 

1, , L
c PX c c , Our next effort is to apply the 

convex pyramid method to cX , so as to obtain vertices of 
convex hull as , ,f s pa a a . However, due to some residual 
error and PVE, selecting a perfect convex hull with assumed 
three vertices, which must enclose all cluster centers, is 
unrealistic. Hence, we propose here a convexity measure to 
obtain an optimum convex hull of 3 well-grounded points 
among 1, , Pc c . The convexity measure (CM) is of 
minimum-margin manner, given by 

1 3
1 2 31, ,

min  , , ,
P

iil l
CM e l l l               (8) 

where
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1 2 3

23
1 2 3 1, , 2
, , min , 

ji i j lj
e l l l c c        (9) 

subject to 
3

j1
 =1, 0 1,2,3,   jj

j in which 

1 2 3, , 1, ,l l l P  and i jl l  for i j . The purpose of 
the convexity measure is to find a 3-edge convex hull which 
has minimum sum of margin between the convex hull and 
points outside it. The inner optimization problem given by 
(9) is a convex optimization, while the outer optimization 
problem in (8) could be solved by exhaustive search of 3

PC
combinatorial possibilities, since P  is reasonably small.   
    After finding the estimated TACs ˆ ˆ ˆ, ,f s pa a a  , which are 
the three clustered centers with minimum CM, we can 
obtain APDs by least-square fitting under non-negative 
constraint of APD. Specifically, the problem can be 
formulated as  

2
( )

( ) arg min || ( ) [ , , ] ( ) ||

          s.t. ( ) 0  , ,

f s p
i

j

i i i

k i for j f s p
k

k x a a a k
.         (10) 

By (10), we can obtain the estimated APDs  
( ) [ ( ), ( ), ( )]T

f s pi k i k i k ik .

3. EXPERIMENTAL RESULTS 
 

In this section, we demonstrate the efficacy of our method 
on the real DCE-MRI data. The data was acquired at NIH 
Clinical Center using gadolinium DTPA as the contrast 
agent. Three dimensional DCE-MRI scans were performed 
every 30 seconds for a total of 11 minutes after the injection 
of the contrast agent.

We performed several preprocessing steps on the raw 
data to assure accurate performance. First, we mask part of 
the image to highlight the region of interest, i.e, tumor site. 
Second, we eliminate the first and last few images for a 
meaningful separation because the insignificant tracer 
uptake on these head/tail images would affect the separation 
performance. The resultant number of images is then 20. 

Figure 4 shows the compartment TACs obtained by the 
traditional BSS algorithms such as NMF [9] and nICA [3], 
and by our method. 4(a) and 4(b) show that NMF and nICA 
fail to obtain the expected compartment TACs where some 
unexpected patterns, i.e., the slow flow has an apparent 
down trend at first several time points, violating the 
biomedical facts that all compartment TACs shall go up 
initially. The TACs estimated by our proposed framework 
are shown in 4(c). This result presents a good agreement 
with biomedical expectation and illustrates the validity of 
the compartment model given by (1) and (2). Figure 5 
shows the reconstructed APD obtained by our method. 

4. CONCLUSION 
 

A convexity-principled hybrid method is proposed in this 
paper, to dissect multiple biomarkers from dynamic 
functional imaging data. Experimental results coincide with 
underlying biomedical expectations. Our preliminary studies 
provide useful theory and information on the utility of the 
proposed methods for simultaneous imaging of multiple 
functional or molecular biomarkers. Given the difficulty of 
the task, while the optimality of these methods may be data 
or modality dependent, we would expect them to be 
important tools in dynamic image formation and analysis. 
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 (a)                                   (b)                                     (c)                   
Fig. 4. Compartment TACs obtained by (a) NMF, (b) nICA, and (c) our 
proposed hybrid method 

       
                     (a)                      (b)                       (c) 

Fig.5. Angiogenic permeability distributions estimated by our proposed 
framework: (a) slow flow, (b) fast flow, (c) input function.
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